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Abstract: There are two different theory methods that are rough set theory and evidence theory, but these two theories can
both handle some incomplete and uncertain information. In this study, these two models are combined in the interval-valued
fuzzy ordered information system (IVFOIS). Belief functions and plausibility functions are proposed based on dominance
relations in IVFOISs. The belief and plausibility reducts are defined in interval-valued fuzzy ordered decision tables (IVFODTs)
and the attribute reduction of IVFODTs based on evidence theory is established. Finally, the authors use an instance to verify
the above argument.

1 Introduction
Rough set theory (RST) [1] which was pioneered by the scientist
Pawlak in 1982 is an effective mathematical paradigm to tackle the
imprecise, uncertain and tremendous information in intelligent
systems [2]. The key benefit of the rough set method is that no
extra information is needed, rather than other theories, such as
membership of fuzzy set theory, the probability distribution in
probability theory or basic probability distribution in Dempster–
Shafer evidence theory [3], all of which require their respective
appendages. The starting point of the theory is to observe the
indiscernible objects with the same description in the available
information [4, 5]. It can analyse and reason data, and extract
hidden knowledge from data, and reveal its potential rules. It is
also an objective and effective data mining method. RST is based
on the classification mechanism. It links knowledge with
classification, and considers that knowledge is the ability to
classify objects, and knowledge base is a set of classification
methods. Its main idea is to approximate inaccurate or uncertain
knowledge by using knowledge known in the knowledge base.
Ever since the advent of RST, it has been triumphantly applied in
lots of fields especially in expert systems, granular computing and
machine learning [6]. Nevertheless, the classical rough set cannot
find and handle the inconsistencies from the standard
considerations, that is, the order of preference attributes, such as
project investment, market share, test scores and debt ratio. In
order to handle this problem, Greco and others put forward that the
rough set method with preference is used to sort attributes under
the dominance criterion, that is, the extension of the traditional
RST. It is referred as the dominance-based rough set approach
(DRSA) [7–9]. Moreover, the DRSA also considers the
relationship between classification based on condition criteria and
object set in different information systems, and studies its related
contents [10–15]. Since the establishment of the DRSA, it has been
extended to the environment of various information systems to
cope with different types of rule extraction, knowledge acquisition,
attribute reduction and so on.

Another important way to handle the uncertainty of information
and data is the Dempster–Shafer evidence theory, which is an
extension of Bayesian theory of subjective judgment. Belief
structure is the basic representative structure in evidence theory,
and it is composed of a subset of elements called focus elements. In
addition, a belief structure is also the sum of associated individual
positive weights. Belief and plausibility functions [16] are basic
numeric measures in the belief structure. Combining the traditional
rough set with the Dempster–Shafer evidence theory [17, 18], the

mass measure of a partition of the universe is described by using
the approximate values of the rough membership of the belief and
the plausibility functions [19]. The non-numerical aspects of a set
of available information are described by the lower and the upper
approximation operators. The numeric aspects about uncertain
information of the same set are represented by the belief and
plausibility measures. Different belief structures have been shown
to be related to different approximation spaces. The two different
pairs of lower and upper approximation can make sense to explain
corresponding the belief and the plausibility functions [20–24].
Therefore, we can use the above-mentioned two functions to
characterise attribute reduct.

Many studies on attribute reduction concerned in the certainly
single-valued or ordered information system, there are few
concerns about IVFOISs. For example, Qian et al. [25]
investigated, respectively, a pre-ordered relation in interval-value
information systems and decision tables with interval-value and
established a rough set method via dominance relation to the
interval-valued decision analysis. Yang et al. [26, 27] put forward
the contents and related properties of dominance relations in the
interval-valued information system. Wang and Shi [28] studied on
the basis of evidence theory the basic notions and related properties
of attribute reduction and obtained the characterisation and
knowledge reduction methods via this theory. Du and Hu [29]
introduced knowledge reduct in an ordered decision table on the
basis of evidence theory. The belief reduction and plausibility
reduction were proposed based on belief and plausibility functions.
Moreover, their relationships with the traditional reduction were
discussed. In our paper, combine the evidence theory with the
rough set in the fuzzy decision table, and explore the belief and
plausibility function based on pre-ordered relations, and combine
the attribute measure to get the relative reduction.

For the sake of discussion, we give some preliminaries on an
IVFOIS and fundamental introduction to evidence theory in
Section 2. In Section 3, we use the basic set allocation function to
establish the probability measure space under the relation with
preference in an IVFOIS. Then, in this context, two important
functions of evidence theory are defined and their attribute
reduction is further studied. At the same time, in Section 4, the
decision attribute is added and the content of Section 3 is further
investigated. Furthermore, in Section 3, combining interior and
exterior significance measures of attribute sets, we establish a
general method for finding some type of reduction that we are
concerned with, which is applied to the case in Section 4 as well.
Section 5 summarises the related research work of knowledge
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reduction in IVFODTs, and puts forward suggestions for further
study.

2 Preliminary
In the following, we first review the basic knowledge, which is
divided into two parts: interval-valued fuzzy ordered information
system (IVFOIS) and evidence theory.

2.1 Interval-valued fuzzy ordered information systems

An interval-valued fuzzy information system (IVFIS) is a
quadruple I = (U, AT , V , F), where U is not a empty finite
universe, AT is a finite non-empty attribute set, V = ⋃a ∈ A Va is the
domain of all criteria a, where Va is an interval-valued fuzzy set of
universe based on attribute a and F = { f :U → V} are mapping
sets of object attribute value, in which f :U × AT → V  is a function
that satisfies f (x, a) ∈ Va for each a ∈ AT . That is
f (x, a) = [aL, aR] for a ∈ AT , where aL(x):U → [0, 1] and
aR(x):U → [0, 1] and satisfy aL(x) ≤ aR(x) for each x ∈ U . In
particular, when aL(x) = aR(x), f (x, a) degenerates into a real
number.

Let I = (U, AT , V , F) be an IVFIS. ∀a ∈ AT , the attribute
values are compared in an IVFIS. We define

f (xi, a) ≤ f (xj, a) ⇔ aL(xi) ≤ aL(xj), aR(xi) ≤ aR(xj),
f (xi, a) ≥ f (xj, a) ⇔ aL(xi) ≥ aL(xj), aR(xi) ≥ aR(xj),

(1)

where ‘≤’ and ‘≥’ are, respectively, represented as an decreasing
preference and an increasing preference. An attribute is a criterion
if the domain of criteria is preference according to an decreasing
order and an increasing order.
 

Definition 1: Let I = (U, AT , V , F) be an IVFIS. If all attributes
are criteria, I is referred as an IVFOIS [28, 29].

We suppose that the domain of criterion a ∈ AT  is preference
with the relation ≥a. The statement xs ≥a xt indicates that xs is at
least as good as xt based on the criterion a . We say that A ⊆ AT  are
criteria. Then xs ≥A xt ⇔ xs ≥a xt(∀a ∈ A). The dominance relation
with regard to A can be defined as (see (2)) . Based on dominance
relation RA

≥, dominance classes can be defined as

[xs]A
≥ = {xt ∈ U (xs, xt) ∈ RA

≥}
= {xt ∈ U (∀a ∈ A)aL(xt) ≤ aL(xj), aR(xs) ≤ aR(xt)}

(3)

Let U /RA
≥ = {[x]A

≥ x ∈ U} represent all of interval-valued
dominance classes based on the dominance relation RA

≥. Generally,
dominance classes [x]A

≥  are not a partition of the universe U but just
a cover of the universe U.

There is an interval-valued fuzzy ordered decision table
(IVFODT) I = (U, AT ∪ {d}, V , F), where d(d ∉ AT) is only
decision criterion and makes a division of universe U. Let
DC = {Ds, s ∈ N}, N = {1, 2, …, n} be the set of these ordered
classes. It means that for all s, r ∈ T  we have the objects which
from Ds are preferred to the objects from Dr, if r ≤ s. The
approximated sets based on the decision attribute are upward
unions Ds

≥ and downward unions Ds
≤, which, respectively, are

defined as Ds
≥ = ⋃r ≥ s Dr, Ds

≤ = ⋃r ≤ s Dr(s ∈ N). So it is easy to get
that D1

≥ = Dn
≤ = U, Dn

≥ = Dn, D1
≤ = D1. Then Ds

≥, Ds − 1
≤  are

complementary to each other for all s ∈ T .
 

Definition 2: Let I = (U, AT , V , F) be an IVFOIS and A ⊆ AT .
Then the lower and upper approximations with regard to Ds

≥ are
defined as

RA
≥(Ds

≥) = {x [x]A
≥ ⊆ Ds

≥, x ∈ U},
RA

≥(Ds
≥) = {x [x]A

≥ ∩ Ds
≥ ≠ ∅, x ∈ U},

(4)

RA
≥(Ds

≥) definitely belongs to sets of objects of Ds
≥ . RA

≥(Ds
≥) possibly

belongs to sets of objects of Ds
≥. We denote

BnA
≥(Ds

≥) = RA
≥(Ds

≥) − RA
≥(Ds

≥), where BnA
≥(Ds

≥) is called the boundary
region with respect to Ds

≥.
 

Proposition 1: Let I = (U, AT , V , F) be an IVFOIS and
A ⊆ AT . Then for Ds

≥(1 ≤ s ≤ n), rough approximations
RA

≥(Ds
≥), RA

≥(Ds
≥) meet the following conclusions:

(i) RA
≥(Ds

≥) ⊆ Ds
≥ ⊆ RA

≥(Ds
≥) .

(ii) RA
≥(∅) = ∅, RA

≥(∅) = ∅ .
(iii) RA

≥(U) = U, RA
≥(U) = U .

(iv)
RA

≥(Ds
≥ ∩ Dr

≥) = RA
≥(Ds

≥) ∩ RA
≥(Dr

≥), RA
≥(Ds

≥ ∪ Dr
≥) = RA

≥(Ds
≥) ∪ RA

≥(Dr
≥) .

(v)
RA

≥(Ds
≥ ∪ Dr

≥) ⊇ RA
≥(Ds

≥) ∪ RA
≥(Dr

≥), RA
≥(Ds

≥ ∩ Dr
≥) ⊆ RA

≥(Ds
≥) ∩ RA

≥(Dr
≥) .

2.2 Dempster–Shafer evidence theory

Next, we mainly review the belief and plausibility functions of
evidence theory. First, let us first introduce the mass function that
is closely related to the two functions mentioned above.
 

Definition 3: Let a function m:P(U) → [0, 1] be to satisfy the
following two conditions [30].

(i) m(∅) = 0.
(ii) ∑X ⊆ U m(X) = 1.

So, the function m can be referred as a mass function.
Combine the belief structure M, m , the belief and plausibility

functions are given in the following.
 

Definition 4: Let a function Bel:P(U) → [0, 1] be a belief
function if for X ∈ P U , the function satisfies the following
equation where M, m  is a belief structure on universe U [30, 31]:

Bel X = ∑
T ⊆ X
T ∈ M

m T .
(5)

Let a function Pl:P(U) → [0, 1] be a plausibility function on
universe U if the function satisfies the following condition for
X ∈ P U :

Pl X = ∑
T ∩ X ≠ 0

T ∈ M

m T .
(6)

The belief and the plausibility functions correspond to the lower
approximation and the upper approximation, which are used to
indicate the certainty and possibility of the support for the set.
They satisfy the following property:

(i) Bel (∅) = 0, Pl (∅) = 0.
(ii) Bel (U) = 1, Pl(U) = 1.
(iii) For ∀Xi ∈ P(U)

RA
≥ = {(xs, xt) ∈ U × U xt ≥a xs, ∀a ∈ A}

= {(xs, xt) ∈ U × U (∀a ∈ A)aL(xs) ≤ aL(xt), aR(xs) ≤ aR(xt)} .
(2)
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Bel ⋃
i = 1

n
Xi ≥ ∑

ϕ ≠ K ⊆ 1, 2, …, n
( − 1) K + 1Bel ⋂

k = K
Xi ,

Pl ⋃
i = 1

n
Xi ≤ ∑

ϕ ≠ K ⊆ 1, 2, …, n
( − 1) K + 1Bel ⋂

k = K
Xi .

(7)

3 Attribute reduction in IVFOISs
Reduction is the minimal subset of attributes in an information
system. In an IVFOIS, attribute reduction is to remove some
unnecessary criteria from the information system according to the
dominance relation. In this part, the evidence theory is extended to
the relation with preference, and the attribute reduct method of
IVFOISs in view of evidence theory is established.
 

Definition 5: Let I = (U, AT , V , F) be an IVFOIS. For
X ∈ P(U), A ⊆ AT . We denote

hA(X) = {x: [x]A
≥ = X, x ∈ U} . (8)

Apparently, y ∈ hA(X) ⇔ [y]A
≥ = X. Meanwhile, hA(X) satisfies the

following two properties:

(i) ⋃X ⊆ U hA(X) = U,
(ii) If Xs ≠ Xt, then hA(Xs) ∩ hA(Xt) = ∅.

Obviously, the function hA(X) is the universe partition into
equivalence classes. So a mass function mA based on attribute set A
can be defined as according to the function hA(X)

mA(X) = hA(X)
U . (9)

It is easy to know that numeric measure mA stems from ratio of
cardinalities of sets corresponding hA and the universe U.
 

Definition 6: Let I = (U, AT , V , F) be an IVFOIS, X ∈ P(U)
and A ⊆ AT . mA is a mass function with regard to A. We have a
belief and a plausibility function on U in the following [24, 29]:

BelA
≥(X) = ∑

T ⊆ X, T ∈ U /RA
≥
mA(T),

PlA
≥(X) = ∑

T ∩ X ≠ ∅, T ∈ U /RA
≥
mA(T) .

(10)

It is apparent to know that 0 ≤ BelA
≥(X) ≤ 1, 0 ≤ PlA

≥(X) ≤ 1. In the
same time, the above two functions meet the following two
properties:

(i) PlA
≥(X) = 1 − BelA

≥(XC).
(ii) BelA

≥(X) ≤ PlA
≥(X), for every X ∈ P(U).

(iii) BelA
≥(X) ≤ BelA

≥(X) ≤ PlA
≥(X) ≤ PlA

≥(X), if B ⊆ A ⊆ AT .

By the definition of belief function Bel≥
A(X) and mass function

mA(X) it follows that (see (11)) . Finally, we can find that
BelA

≥(X) = RA
≥(X) / U .

In the same way, it is easy to find PlA
≥(X) = RA

≥(X) / U . Thus,
we get that BelA

≥(X) ≤ X / U ≤ PlA
≥(X), for every X ∈ P(U).

Especially, when X ∈ U /RA
≥, the equation BelA

≥(X) = X / U  holds.
Due to ∃ y ∈ U, such that RA

≥(y) = X, we get that

BelA
≥(X) = {x ∈ U : [x]A

≥ ⊆ X}
U

= {x ∈ U : [x]A
≥ ⊆ RA

≥(y)}
U

= {x ∈ U : x ∈ RA
≥(y)}

U = RA
≥(y)
U = X

U .

(12)

Therefore, there is property in the following.
 

Theorem 1: Let I = (U, AT , V , F) be an IVFOIS and A ⊆ AT .
Then

(i)
BelA

≥(X) = RA
≥(X) / U , especially X ∈ U /RA

≥, we have BelA
≥(X) =

X / U .
(ii) PlA

≥(X) = RA
≥(X) / U .

 
Definition 7: Let I = (U, AT , V , F) be an IVFOIS and

B ⊆ A ⊆ AT , then

(i) A is called a consistent set if RA
≥(X) = RAT

≥ (X) holds. Moreover,
if RA

≥(X) = RAT
≥ (X) and RB

≥(X) ≠ RAT
≥ (X), then A is called a reduct.

(ii) A is called a belief consistent set if BelA
≥(X) = BelAT

≥ (X) holds.
Moreover, ∀X ∈ U /RA

≥, if BelA
≥(X) = BelAT

≥ (X) and
BelB

≥(X) ≠ BelAT
≥ (X), then A is called a belief reduct.

(iii) A is called a plausibility consistent set if PlA
≥(X) = PlAT

≥ (X)
holds. Moreover, ∀X ∈ U /RA

≥, if PlA
≥(X) = PlAT

≥ (X) and
PlB

≥(X) ≠ PlAT
≥ (X), then A is called a plausibility reduct.

 
Theorem 2: Let I = (U, AT , V , F) be an IVFOIS, X ∈ U /RAT

≥

and A ⊆ AT . Then we have

(i) A is called a belief consistent set ⇔ ∑X ∈ U /RAT
≥ BelA

≥(X) = HBel .
(ii) A is called a belief reduction set ⇔ ∑X ∈ U /RAT

≥ BelA
≥(X) = HBel,

and for any set of non-empty subsets
B∅A, ∑X ∈ U /RAT

≥ BelB
≥(X) < HBel .

(iii) A is called a belief reduct set ⇔ ∑X ∈ U /RAT
≥ BelA

≥(X) / X = 1,
and for any set of non-empty subset
B∅A, ∑X ∈ U /RAT

≥ BelB
≥(X) / X < 1..

where HBel is represented as the belief sum
∑X ∈ U /RAT

≥ BelAT
≥ (X) = HBel.

 
Proof:

(i) A is called a belief consistent set

BelA
≥(X) = ∑

T ⊆ X, T ∈ U /RA
≥
mA(T) = ∑

T ⊆ X, T ∈ U /RA
≥

hA(T)
U

= ∑
T ⊆ X, T ∈ U /RA

≥

{x ∈ U : [x]A
≥ = T}

U = {x ∈ U : [x]A
≥ ⊆ X}

U

= RA
≥(X)
U .

(11)
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⇔ BelA
≥(X) = BelAT

≥ (X) ⇔ ∑
X ∈ U /RAT

≥
BelAT

≥ (X)

= ∑
X ∈ U /RAT

≥
BelA

≥(X) = HBel .
(13)

(ii) According to the property BelB
≥(X) ≤ BelA

≥(X) if B ⊆ A, we can
obtain the conclusion that A is called a belief reduction set.
⇔ BelB

≥ ≤ BelA
≥ .

⇔ ∑
X ∈ U /RAT

≥
BelB

≥(X) < ∑
X ∈ U /RAT

≥
BelA

≥(X) = HBel . (14)

(iii) Based on Theorem 1, it is apparent to know that
BelA

≥(X) = X / U  when X ∈ U /RA
≥. So

∑
X ∈ U /RAT

≥

BelA
≥(X)
X = ∑

x ∈ U
X = RA

≥(x)

BelA
≥(X)
X = ∑

x ∈ U

1
X

X
U = 1. (15)

□
Now, we know that A satisfies the condition of a belief

consistent set, and combine Theorem 2 (ii)
∑X ∈ U /RAT

≥ BelB
≥(X) < ∑X ∈ U /RAT

≥ BelA
≥(X) = HBel. Furthermore

∑
X ∈ U /RAT

≥

BelB
≥(X)
X < 1. (16)

In the following, based on belief function and plausibility function,
the concept of interior and exterior significance measures is
introduced. By studying the importance measure of each attribute,
we can achieve the belief reduction and the plausibility reduction.

For B ⊆ AT , if the attribute a belongs to attribute set B, the
interior significance measure of attribute a indicates the importance
of attributes in the attribute set B. So it is to determine whether the
attribute a is necessary to an attribute set B. The interior
significance measure of the attribute is defined by deleting this
attribute a to compare the changes in the belief function.
 

Definition 8: Let I = (U, AT , V , F) be an IVFOIS, B ⊆ AT  and
a ∈ B.

Then the interior significance measure of criterion a with regard
to B is defined as

siginterior
≥ (a, B) = ∑

X ∈ U /RAT
≥

BelB
≥(X) − ∑

X ∈ U /RAT
≥

BelB − {a}
≥ (X) . (17)

Obviously, it is apparent to know that siginterior
≥ (a, B) ≥ 0. When

sigiinterior
≥ (a, B) > 0, it is represented as a to be indispensable in B.

Otherwise, the attribute a is redundant.
 

Definition 9: Let I = (U, AT , V , F) be an IVFOIS, B ⊆ AT  and
a ∉ B.

Then the exterior significance measure of attribute a with
regard to B is defined as

sigexterior
≥ (a, B) = ∑

X ∈ U /RAT
≥

BelB ∪ {a}
≥ (X) − ∑

X ∈ U /RAT
≥

BelB
≥(X) . (18)

Similarly, for B ⊆ AT , if the attribute a does not belong to attribute
set B, the exterior significance measure means that the attribute set
B does not have this attribute a and that is whether produces the
change of the belief function in the attribute set when the attribute
a is added. Thus, the exterior importance of the attribute to the
attribute set is judged.

Certainly, the belief core is essential attribute for the attribute
set AT. According to the above, we can obtain the belief core
Core = {a ∈ AT : siginterior

≥ (a, AT) > 0}. The core is the only one
and the intersection of all the belief reductions. So, when we have
the core, compare the exterior significance measure of attributes
which are out of core and expand from a belief core to a belief
reduction B by adding a number of attributes to satisfy the
condition

∑
X ∈ U /RAT

≥
BelB

≥(X) = ∑
X ∈ U /RAT

≥
BelAT

≥ (X) (19)

Next, we use an example to better illustrate relative belief
reduction and relative plausibility reduction.
 

Example 1: Venture investment has become a more and more
important source of funding for a lot of firms and plays a vital role
in the process of entrepreneurship, especially in emerging cutting-
edge technologies and markets. For investors and policy makers,
before investing, you have to choose a better project based on some
potential capital projects, or find some direction according to your
existing successful investment cases. Considering the investment
problem of VC firm, there are now eight investors who can
evaluate them from the risk factors. There are four kinds of risk
factors: market, technology, management and production. Consider
the IVFOISs and the IVFOIS are given in Table 1, where
U = {x1, x2, …, x8} and
AT = {market, technology, production, management} = {a1, a2, a3,
a4}

. 

By calculation, we have U /RA
≥ = {[x]A

≥ ∈ P(U) x ∈ U}, where

[x1]AT
≥ = {x1, x3, x7}, [x2]AT

≥ = {x2, x7, x8}, [x3]AT
≥ = {x3, x7},

[x4]AT
≥ = {x3, x4, x7}, [x5]AT

≥ = [x8]AT
≥ {x3, x5, x7, x8},

[x6]AT
≥ = {x1, x3, x6, x7, x8}, [x7]AT

≥ = {x7} .
(20)

According to Definition 5 that we have

hAT(X) = {x}, X = [x]AT
≥

∅, otherwise
(21)

Therefore, [x]AT
≥ = {y ∈ U : y = hAT(X), X ∈ P(U)}, thus

mAT(X) =
1
8, X = [x]AT

≥

0, otherwise
(22)

Table 1 Interval-valued fuzzy ordered information system
U a1 a2 a3 a4
x1 [0.12,0.23] [0.72,0.79] [0.45,0.63] [0.45,0.63]
x2 [0.72,0.38] [0,07,0.21] [0.45,0.63] [0.23,0.38]
x3 [0.47,0.60] [0,77,0.81] [0.72,0.81] [0.57,0.69]
x4 [0.42,0.58] [0,72,0.79] [0.45,0.63] [0.14,0.32]
x5 [0.47,0.60] [0.14,0.24] [0.72,0.81] [0,49,0.62]
x6 [0.07,0.21] [0.42,0.49] [0.21,0.38] [0.41,0.57]
x7 [0.82,0.94] [0.82,0.83] [0.79,0.85] [0.76,0.89]
x8 [0.74,0.88] [0.47,0.53] [0.72,0.81] [0.51,0.64]
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Then (see (23)) .

(i) Let B = a1, a2, a3 , then U /RB
≥ = x B

≥ ∈ P U : x ∈ U , where

x1 B
≥ = x1, x3, x4, x7 , x2 B

≥ = x2, x7, x8 ,
x3 B

≥ = x3, x7 , x4 B
≥ = x3, x4, x7 ,

x5 B
≥ = x3, x5, x7, x8 , x6 B

≥ = x1, x3, x4, x6, x7, x8 ,
x7 B

≥ = x7 , x8 B
≥ = x7, x8 .

(24)

Then, we have

∑
X ∈ U /RAT

≥
BelB

≥(X) = 2
8 × 3 + 1

8 + 3
8 × 3 + 4

8 = 20
8 . (25)

Therefore

siginterior
≥ a4, AT = ∑

X ∈ U /RAT
≥

BelAT
≥ X − ∑

X ∈ U /RAT
≥

BelB
≥ X

= 23
8 − 20

8 > 0.
(26)

(ii) Let B = a1, a2, a4 , then U /RB
≥ = x B

≥ ∈ P U  where

x1 B
≥ = x1, x3, x7 , x2 B

≥ = x2, x7, x8 , x3 B
≥ = x3, x7 ,

x4 B
≥ = x3, x4, x7 , x5 B

≥ = x3, x5, x7, x8 ,
x6 B

≥ = x1, x3, x6, x7, x8 , x7 B
≥ = x7 , x8 B

≥ = x7, x8 .
(27)

Then, we have

∑
X ∈ U /RAT

≥
BelB

≥(X) = 2
8 × 3 + 5

8 + 2
8 × 2 + 4

8 + 1
8 = 23

8 . (28)

Therefore

siginterior
≥ a3, AT = ∑

X ∈ U /RAT
≥

BelAT
≥ X − ∑

X ∈ U /RAT
≥

BelB
≥ X

= 23
8 − 23

8 = 0.
(29)

(iii) Let B = a1, a3, a4 , then U /RB
≥ = x B

≥ ∈ P U : x ∈ U  where

x1 B
≥ = x1, x3, x5, x7, x8 , x2 B

≥ = x2, x7, x8 ,
x3 B

≥ = x3, x5, x7, x8 , x4 B
≥ = x2, x3, x4, x5, x7, x8 ,

x5 B
≥ = x3, x5, x7, x8 , x6 B

≥ = x1, x3, x5, x6, x7, x8 ,
x7 B

≥ = x7 , x8 B
≥ = x7, x8 .

(30)

Then, we have

∑
X ∈ U /RAT

≥
BelB

≥(X) = 1
8 × 4 + 3

8 + 2
8 × 2 + 4

8 = 15
8 , (31)

Therefore

siginterior
≥ a2, AT = ∑

X ∈ U /RAT
≥

BelAT
≥ X − ∑

X ∈ U /RAT
≥

BelB
≥ X

= 23
8 − 15

8 > 0.
(32)

(iv) Let B = a2, a3, a4 , then U /RB
≥ = x B

≥ ∈ P U : x ∈ U  where

x1 B
≥ = x1, x3, x7 , x2 B

≥ = x1, x2, x3, x4, x5, x7, x8 ,
x3 B

≥ = x3, x7 , x4 B
≥ = x1, x3, x4, x7 ,

x5 B
≥ = x3, x5, x7, x8 , x6 B

≥ = x1, x3, x6, x7, x8 ,
x7 B

≥ = x7 , x8 B
≥ = x3, x7, x8 .

(33)

Then, we have

∑
X ∈ U /RAT

≥
BelB

≥(X) = 1
8 × 3 + 3

8 + 2
8 × 2 + 4

8 + 5
8 = 19

8 , (34)

Therefore

siginterior
≥ a1, AT = ∑

X ∈ U /RAT
≥

BelAT
≥ X − ∑

X ∈ U /RAT
≥

BelB
≥ X

= 23
8 − 19

8 > 0
(35)

Thus, we know a3 is redundant, the only one belief core and the
belief reduct both are {a1, a2, a4} . It means that production is not
the risk of investment for eight objects.

4 Attribute reductions in IVFODTs
In an decision table, we have to add the decision makers’ opinions.
Therefore, attribute reduction needs to delete redundant attributes
with respect to decision classification in information systems with
decision. Next, we introduce the concepts of relative belief
reduction and relative plausibility reduction with respect to
decision attributes and discuss the relation between them in
IVFODTs.
 

Definition 10: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS and
B ⊆ A ⊆ AT . Then

(i) A is called a relative lower consistent set of I if
RA

≥(Ds
≥) = RAT

≥ (Ds
≥), for all Ds

≥. If RA
≥(Ds

≥) = RAT
≥ (Ds

≥) and
RB

≥(Ds
≥) ≠ RAT

≥ (Ds
≥), then A is called a relative lower reduction of I.

(ii) A is called a relative upper consistent set of I if
RA

≥(Ds
≥) = RAT

≥ (Ds
≥), for all Ds

≥. If RA
≥(Ds

≥) = RAT
≥ (Ds

≥) and
RB

≥(Ds
≥) ≠ RAT

≥ (Ds
≥), then A is called a relative upper reduction of I.

 
Definition 11: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS and

B ⊆ A ⊆ AT . Then

(i) A is called a relative boundary consistent set if
BnA(Ds

≥) = BnAT(Ds
≥), for all Ds

≥. If BnA(Ds
≥) = BnAT(Ds

≥) and
BnB(Ds

≥) ≠ BnAT(Ds
≥), then A is called a relative boundary

reduction.
(ii) A is called a relative belief consistent set if
BelA

≥(Ds
≥) = BelAT

≥ (Ds
≥), for all Ds

≥. If BelA
≥(Ds

≥) = BelAT
≥ (Ds

≥) and
BelB

≥(Ds
≥) ≠ BelAT

≥ (Ds
≥), then A is called a relative belief reduction.

(iii) A is called a relative plausibility consistent set if
PlA

≥(Ds
≥) = PlAT

≥ (Ds
≥), for all Ds

≥. If PlA
≥(Ds

≥) = PlAT
≥ (Ds

≥) and
PlB

≥(Ds
≥) ≠ PlAT

≥ (Ds
≥), then A is called a relative plausibility

reduction.

Certain rules can be obtained from the lower approximations.
Relative to the rules of possible decision, it is supported by the
upper approximations. Due to decision makers who have different
preferences for risk, we need different relative reductions such as a
relative belief and a relative plausibility reductions.
 

Proposition 2: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS and
A ⊆ AT . Then

(i) BelA
≥(Ds

≥) = RA
≥(Ds

≥) / U .
(ii) PlA

≥(Ds
≥) = RA

≥(Ds
≥) / U .

 
Proof: On the basis of Theorem 1, we have
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BelA
≥(X) = {x ∈ U : [x]A

≥ ⊆ X}
U ,

PlA
≥(X) = {x ∈ U : [x]A

≥ ∩ X ≠ ∅}
U .

(36)

Combine the definitions of RA
≥(Ds

≥) and RA
≥(Ds

≥). So we have
BelA≥(Ds

≥) = RA
≥(Ds

≥) / U , PlA≥(Ds
≥) = RA

≥(Ds
≥) / U . □

 
Theorem 3: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS and

A ⊆ AT . Then

A is a relative belief consistent set reduct
⇔ A isa relative lower consistent set reduct

 
Proof:

A is a relative belief consistent set
⇔ BelA

≥(Ds
≥) = BelAT

≥ (Ds
≥) for all Ds

≥ .
⇔ RA

≥(Ds
≥) = RAT

≥ (Ds
≥) for all Ds

≥ .
⇔ RA

≥(Ds
≥) = RAT

≥ (Ds
≥) for all Ds

≥ .
⇔ A is a relative lower consistent set

The relationship between various reductions in IVFODTs will be
specified in the following study. □
 

Definition 12: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS and
the decision criterion d. Then the pre-ordered relation with regard
to d can be defined

Rd
≥ = {(x, y) ∈ U × U f (x, d) ≥ f (y, d)} . (37)

An information system is consistent if ∀(x, y) ∈ RAT
≥  such that

(x, y) ∈ Rd
≥. That means it satisfies RAT

≥ ⊆ Rd
≥, then it is called a

consistent information system.
For a inconsistent IVFOIS, the following characterisations hold.

 
Proposition 3: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS. Then

I is consistent ⇔ RAT
≥ (Ds

≥) = Ds
≥ = RAT

≥ (Ds
≥), ∀s ∈ {1, …, n} (38)

 
Proof: ′ ⇒′ Obviously, it is that RAT

≥ (Ds
≥) ⊆ Ds

≥ . From other
perspective, it follows that Rd

≥(x) ⊆ Ds
≥ for all x ∈ Ds

≥. According to
the consistency of I, it is clear that RAT

≥ (x) ⊆ Rd
≥(x). So we have

x ∈ RAT
≥ (Ds

≥). Thus

RAT
≥ (Ds

≥) = Ds
≥ . (39)

First, we have Ds
≥ ⊆ RAT

≥ (Ds
≥). And ∀x ∈ RAT

≥ (Ds
≥), ∃y ∈ Ds

≥, such
that x ∈ RAT

≥ (y). As I is consistent, it is that RAT
≥ (y) ⊆ Rd

≥(y). By
considering Rd

≥(y) ⊆ Ds
≥. Then we have x ∈ Ds

≥. Hence,
RAT

≥ (Ds
≥) ⊆ Ds

≥. Finally, we get that RAT
≥ (Ds

≥) = Ds
≥ .

′ ⇐′ If there exist an x ∈ U such that RAT
≥ (x) ⊄ Rd

≥(x) then there
exists a y of universe U that satisfies y ∈ RAT

≥ (x) not yet y ∉ Rd
≥(x).

By f (x, d) = s, then x ∈ Ds
≥ and y ∉ Ds

≥. According to the
assumption RAT

≥ (Ds
≥) = Ds

≥, we have x ∈ Ds
≥ then it is that

RAT
≥ (x) ⊆ Ds

≥. Thus, y ∈ Ds
≥. It is a contradiction. □

 
Definition 13: Let I = (U, AT ∪ {d}, V , F) be an IVFOIS,

B ⊆ AT . Then the interior and exterior significance measure of the
criterion a with regard to decision criterion d when, respectively,
a ∈ B and a ∉ B is defined as

siginterior
≥ (a, B, d) = ∑

s ∈ T
BelB

≥(Ds
≥) − ∑

s ∈ T
BelB − {a}

≥ (Ds
≥) (a

∈ B) . (40)

sigexterior
≥ (a, B, d) = ∑

s ∈ T
BelB ∪ {a}

≥ (Ds
≥) − ∑

s ∈ T
BelB

≥(Ds
≥) (a

∉ B) . (41)

Based on IVFODTs, the following example is given to verify the
above theory.
 

Example 2: Continue from Example 1. Let us add the decision
criterion d, which represents the degree of risk taking (Table 2). 

So we can get

U /d = DC = {D1, D2, D3}, (42)

where D1 = {x1, x2}, D2 = {x4, x7, x8}, D3 = {x3, x5, x6} .
Thus, D1

≥ = {x1, …, x8}, D2
≥ = {x3, …, x8}, D3

≥ = {x3, x5, x6} .
Let

∑
s ∈ T

BelAT
≥ Ds

≥ = BelAT
≥ D1

≥ + BelAT
≥ D2

≥ + BelAT
≥ D3

≥

= 8
8 + 5

8 + 0
8 = 13

8 .
(43)

(i) Let B = a1, a2, a3 , then

∑
s ∈ T

BelAT
≥ Ds

≥ = (8/8) + (5/8) + (0/8) = (13/8) . (44)

Thus,

∑
X ∈ U /RAT

≥
BelAT

≥ (X) = (3/8) × 3 + (5/8)+(2/8) × 2+(4/8) = (23/8) (23)

Table 2 Interval-valued fuzzy ordered decision table
U a1 a2 a3 a4 d
x1 [0.12,0.23] [0.72,0.79] [0.45,0.63] [0.45,0.63] 1
x2 [0.72,0.38] [0,07,0.21] [0.45,0.63] [0.23,0.38] 1
x3 [0.47,0.60] [0,77,0.81] [0.72,0.81] [0.57,0.69] 2
x4 [0.42,0.58] [0,72,0.79] [0.45,0.63] [0.14,0.32] 3
x5 [0.47,0.60] [0.14,0.24] [0.72,0.81] [0,49,0.62] 3
x6 [0.07,0.21] [0.42,0.49] [0.21,0.38] [0.41,0.57] 2
x7 [0.82,0.94] [0.82,0.83] [0.79,0.85] [0.76,0.89] 3
x8 [0.74,0.88] [0.47,0.53] [0.72,0.81] [0.51,0.64] 2
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siginterior
≥ a4, AT , d = ∑

s ∈ T
BelAT

≥ Ds
≥ − ∑

s ∈ T
BelB

≥ Ds
≥

= 13
8 − 13

8 = 0.
(45)

(ii) Let B = a1, a2, a4 , then

∑
s ∈ T

BelAT
≥ Ds

≥ = (8/8) + (5/8) + (0/8) = (13/8) (46)

Thus,

siginterior
≥ a3, AT , d = ∑

s ∈ T
BelAT

≥ Ds
≥ − ∑

s ∈ T
BelB

≥ Ds
≥

= 13
8 − 13

8 = 0.
(47)

(iii) Let B = a1, a3, a4 , then

∑
s ∈ T

BelAT
≥ Ds

≥ = (8/8) + (4/8) + (0/8) = (12/8) (48)

Thus,

siginterior
≥ a2, AT , d = ∑

s ∈ T
BelAT

≥ Ds
≥ − ∑

s ∈ T
BelB

≥ Ds
≥

= 13
8 − 12

8 > 0
(49)

(iv) Let B = a2, a3, a4 , then

∑
s ∈ T

BelAT
≥ Ds

≥ = (8/8) + (4/8) + (0/8) = (12/8) (50)

Thus,

siginterior
≥ a1, AT , d = ∑

s ∈ T
BelAT

≥ Ds
≥ − ∑

s ∈ T
BelB≥ Ds

≥

= 13
8 − 12

8 > 0
(51)

Thus, it can be seen that combining the decision attribute the
relative belief core Corer = {a1, a2} and

∑
s ∈ T

BelCorer
≥ Ds

≥ = (8/8) + (4/8) + (0/8) = (12/8) ≠ (13/8) (52)

Moreover, it is calculated by adding the attribute a3 or a4.

• Let A = a1, a2, a3 , then ∑s ∈ T BelA
≥ Ds

≥ = (13/8),

sigexterior
≥ a3, C, d = ∑

s ∈ T
BelA

≥ Ds
≥ − ∑

s ∈ T
BelCorer

≥ Ds
≥

= 1
8 .

(53)

• Let A = a1, a2, a4 , then ∑s ∈ T BelA
≥ Ds

≥ = (13/8),

sigexterior
≥ a4, C, d = ∑

s ∈ T
BelA

≥ Ds
≥ − ∑

s ∈ T
BelCorer

≥ Ds
≥

= 1
8 .

(54)

We get (see (55)) . So, the relative belief reducts are {a1, a2, a3}
and {a1, a2, a4}.

5 Conclusion

The method of rough set based on pre-ordered relation is an
extension of classical RST. Attribute reduction is to delete
redundant information without affecting the final classification
result, so as to better find effective information and analyse
potential rules. In terms of real-life applications, it takes into
account the preferences of users. Taking into account the two
aspects of theoretical and practical, it is very effective to combine
the preference RST with evidence theory to establish a new model.
First of all, belief and plausibility functions in an IVFOIS are
introduced by mass function. Through the interior significance
measure, core elements can be found in IVFOIS. Next, reduction is
obtained through the exterior significance measure, which is
including core elements. On this basis, we have that attribute
reduction is studied under the background of the IVFOIS. At the
end of this paper, some examples confirm the effectiveness and
performance of our proposed method.
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